Eckart Modrow

Computer Science
with / Snap!

¢ Snap!by Exampleg

Snap! Build Your Own B X Snap! Buid Your Own B X o = =] X
C | @ file///C:/Users/emodr/Desktop/Snap!% 208uikd%20¥our%200wn%208locks36204.1.2.1.html 1

& 3 Drip Painting mit Beispieien

et s .n-—a—ﬂ-.a-md costume B
PETRSARSN N geryrvprp—]

ot x b‘—t—d—ﬂh-ﬂ-‘.du— B
oty hﬂn-—l—Ou-—--—-ﬂd B
¢ random € I

et 5 tn pick random &

-ty -.u.—n—o-.«-uua_— B
- pick randoms €D to GED _ prk camiom € t= €D

1<

inting mit .xml A Alle anzeigen | X

© Eckart Modrow 208
emodrow@nformatik.unigoettingen.de

@080

EY MC MDD
This work is licensed under a Creative Commons AttribtlioncommerciaShare Alike
4.0 International License. It allows download and redistribution of the complete work with
mention of my namebut no editing or commercial use. In addition to the book, the com-
plete listings of the described programs are loadable from the following address:

http://emu-online.defprojectOfCSwithSnapip
Thescriptsare developed with Snap! 4.1.2.1 Build Your Ovatigs.

Prof. Dr. Modrow, Eckart:
Computer Science with Snap!
- Snap! by Examples -
© emu-online Scheden 2018

All rights reserved

If this book is helpful for you and you would like to express your appreciation in form of a
donation, you can do so at the following PayPal account:

emodrow@emuonline.de
Intended use: Snaglook

This publication and its parts are protected by copyright. Any use in others than legally permitted cases
requires the prior written consent of the author.

The software and hardware names used in this book as well as the brand names of the respective companies
are generally subject to the protection of goods, trademarks and patents. The product names used are pro-
tected by trademark law for the respective copyright holders and cannot be freely used.

This book expresses views and opinions of the author. No dgearangiven for the correct executability
of the given sample source texts in this bdassume no liability or legal responsibilfiyr anydamages
resulting from the use of the source st this book ortherincorrect information.

Preface 3

Preface

Thisbook, similar to its predecessotriformatik mit BYOB, uses a collection of program-
ming examples to explore thecopeof the graphical languaggnap!. It does not replace
a textbook that conveys @®ntent butshows how to us&nap! to applyCS methods.

After Scratch andBYOB, Snap! in the current version 4.1.2 tke next step in the devel-
opment of graphical tools. The system overcomes several limitstibat existed with its
predecessors, so it overcomes many arguments against graphical languages. The current
versionhas beenexpanded by numerousxtensionsin the field of objectoriented pro-
gramming (OOP). tanmeet and exceed all requirements up to high school and beyond.
Since drastic improvements have been achieved aettexutionspeed andavailability of
librariesin different fields likepixel access, audio or use of external resourtiere are

hardly any restrictiorsin applicatiors. Particularly noteworthy in this area is the possibility

to use Jav&script functionse.g.for time-critical operations or extensions with@nap!.

The librariegontainnumerousJavaScripexamples.

The selection of probhas in the following chapters is relatively conservative, partly based
on existing computer science lessons, but it goes beyond that. That's intended. | hope, on
the one hand, ta@wonvert teachers usingaditional lessons, and on the other hand, to pro-
vide contexts that brings sendeom the perspective of a learnéo the information to be
acquired. In this way, teaching should be very much basgd®oonceptdNDcreativity.

The examples describe in detail the handlin@gpép! in different aspects. Aftean intro-
ductory chapter that gives a fast overview ab@utap!, the first few chapterexplain the
featuresof the languagefollowed bysections withoutany obvious appetion. This com-
promise is due to space requirements, because advanced conesptite extended prob-
lems. The examples are not hierarchically ordemamin the second part aralsorather
simpleones At the end of thebookthere are summaries of the methods used in the ex-
amples and an index.

This book is a translation from German. Unfortunately, | do not speak English well, so it will
be bumpy. | apologize for that. But afl the programshadto be changed; a task that |

really had to doBe strong and hold itWlany thanks for the wonderfuidelp of theDeepl?
translation program. | would probably never have finished without these.

| would like to thank Jens Monig for his suppaahd for the results of his work. The learn-
ers will be thanful!

| wish you a lot of fun working witBnap!.

Gottingen am1.4.2018

@a%/&ﬁ\

L E. Modrow, Informatik mit BY ORp://ddi -mod.unigoettingen.de/Informatik%20mit%20BY OB.pdf
2 https://www.deepl.com/translator

Content 4

Content

PrefaceX KRR R RLRIKX 3
ContentX XXX X X XXX XXX XXX XXX XXX X X XXX K X
1 CS and Media StudiggX X XXFE X X X X X X X X X X X XX XEBODERI X X

2 About{ VI LIMX XX XXX XXX PDOX X X X X X X X XXM EKKKOX X X X X

2.1 BlockCriented LanguageX XX X X X X X X X X X X X X 3 HX I XK XX

2.2 Object Criented LanguageX X X @ X X X X X X X X X X X X & GOX X X

2.3 Inheritance byDelegation. X X X @HER X X X X X X X X X XXX X X120

24 Whatis{ Y I LIHEK XX XXXXXPPX XX X X XXX X X X XD X X

2.5 What isSnapinot? XXXXX X X X X X X X X X X X X X XXO0X X X X X2

2.6 TheSnap!ScreenX X X X oXPXADP X X X X X X X X X XXOX X X X X18

2.7 AnExample forBxperienced Users: FIlIX X.X X X X X X XXX DX WD ¢
2.7.1 Writing YourOwn MethodsX XX X X X X X X X X XXX X B X X1& d ¢ P
2.7.2 Elementary Algorithmic and VariablEsX X X X X XXX PP O XIB PP O D
2.7.3 Creating ObjectX. X X X X X X X X X X P X X X XX XK WO OXK DD P
2.7.4 Communicating with Objects X X X XXX X X X @ XXXBEKX X D1 P b d
2.75 Drawing a Diagra{f X X X X @ X X XXX XD X XXXKX X X ¢2b © d P

3 Simple Exampleg X XX X X X X X X X X X X X X X X XXX R R X K XX X X
31 SWimmMIiNgPPX X PPX X X X X DX X X X XK RXKRKAPRKRXRLX X
2.2 SlarSystemX XX EFRE X X X X X PP X X X X X X XO0K X X &K XpXpRX X
2.3 Caesar Encryptiod @ XXX X X X X X X X X XXX PR X X XK X
24 TaskX PP X X X X X X X XRKADX X X X X XPRKHEK X X P X X 2K X

4 Simulationof a Spring Pendulug @ X X X X X X X X X XXX X X & ® X dJ0X X X
4.1 Organizatiorof Cooperation® G X XXX X X X X X XXRPXPK X © X X BK X
4.2 The ClockK @ @ X X X @ G X XK MK XK FKOORXXK X X X X B X © X X X X
4.3 The ExciteK @p X X X X XXX KX X X X X X X X XIXDOBE X X X BX
4.4 TheThread XXX X X X X X X X X X X X XXX X X OXPXX X X © X X B8X X
45 TheBalXX PPX X X X X X X X X X X X X X X X X X XXPPDOOXOXBRNHD X X X
46 ThePe K POX X XX X XXX XXX XX XX X DX XXKXKIDXPRIIKIKD D X X
47 2 K& A& AG | aAryvydzZ I (HARGEDXOK X X KX X BX X X X X O

5 Troubleshooting witf y I LJH X X X X X X XX XPXPXOX KKK KX P d88 ¢ X X X X

6 Lisk and Related Structureé&X X X @ EXXPE X X X X PX X X X X X X PHX X PP X X X X X
6.1 Selection SOrK X X X X X XXKPOBBAX X X X X X X X X X X X X XFH X X X X X
6.2 vdz}\(5‘[X)Q(N.IXXX(XXXXXXXXXXXXXXXXXXXXXXXBQXXXXX
6.3 Routingwith Dijkstra MethodX XXX X X X XXXXdi X X X X X X X X X 40X X X X
6.4 Matrices and BRLOOPSX X XX HEE X X X X X X X DX X X X X X X X X X X X X
6.5 TaskX X X X X X X X XBHDX X XXX PXXXXXXPXXXXXP/XX XXX XXX

7 ObjectOriented ProgammingX X X X @ X X XXPXP XXX P X X X X X X ¥7X X
7.1 Anne and the Filing Cabinets@ @ X X X X X X XK XXX X X X X X48X X
7.2 MagneBX POX X XXX XXX XXX XXX XDPX XXX XXEX XX
7.3 ALearning RoboK XX X X X X X X XXX X X X X X X X X0 X XEDX53

Content 5

8

10

11

12

7.4 ADigitalS\ Y dzf I (.2 XX XOPPXX X XK XX X X X X dX XX X X
7.4.1 Sockets and ConnectioisXX @ @ X X X XXX X X X X X %6& X
7.4.2 SwitchesX D P X X X X X X X X X X X XROXRKIK X X0 X X X X6 X
743 GatesX POEX X X X X X X X X X X X X X XXKXDXE X X X X6
7.4.4 The PeX ®E X XXX X X X X X X X X X X XXX KKK X6
745 958 XOPHEXXXXXXXXXX XX X XXDXRABERKRRKBL
7.4.6 The Interaction ofthe ComponentX ®XXXXPX ® X XOXXPX X X Bl
7.4.7 TasksX PO KK X X X X X X X X X X X X X XK RLOXRKABX

GraphicX X X X X X X XX PPX X X X XXX XXX XXX XXPXXBHXXX XXX XXX XXX
8.1 Line GaphicsX X X X X X X X X X X X PP X X X X X X X X X X X B X X X X X X X X X X
8.2 Pixel Graphics and RGB ModeX X X X DX X X X X X X X X X X X BAX X X X X X X
8.2.1 Pixel Graphics with the Pixels LibrrigX X X X X @ P X X & d X66 X X X X
8.2.2 Pixel Graphics with an own LibrafyX X X XX@@X @ d X X X X %8 ® d d X X X
8.3 The Light of the old Stal6 X X X X X X PX X X X X X X X X X X X XTR X X X X X X X
8.4 A simple RGB Color MiXgK X XXX X X X X DX PX X PX X X X X XX X X X X X X X
85 BNRALI tFAYUGAYT XXXXXDPXXXXXXXXXEKKRXXXXDOXXXXXXXXX
8.6 Edge Detectiolk X X X X X PX X X PX X X X XX XX DPX XX KIX X XX XX X X X X
8.7 TaskX X X XXX BIHPX X X XXX XXX XX XXXXXPXX XXX XXX XXXXXX

ImageRecognitionX X XX XTAXX PDPX PX X X X

9.1 A Barcode Scann€r ® X X @PKXKEKX X X X X X XXX PPX XX XA PX X X X X X X

9.2 Project: Transit Prohibitedd @ X X X X BB X X X X PP X X X X X PR X X X X X X

9.3 Project: Face Recognitioh® OXIDK X X X X X X X X X PP X X X X BEPX X X X X X X

9.4 TaskX @ RXOFBX X X X X X X X X PX X XXX XXX XXX PPXHEXXXPXXX DX XX X

SoundsX X @ X XXKXP DX X X X X X X X X BOEOKEE XX X X % X X XOK
10.1Find Sound® ® X X ® @ X X X XK BRI XRKXKXK X X XXX X®5
10.2Processing Soundsd® XD X X X X X X X X X X X X X X X X X ¢ K X08b X
10.3Making MusigP @ X X DO X X X X X XX X X X HHRBX X X X X X X ®X X X ©
10.4 Project: Hearing cheak @ X X @ ® XXOOO0OOMD X X X XXX X @ PO X X
10.5Taskgd P X X E X X X X XXX X X X X X X X X X X X XXKPOKEOX X d

Project: Electrons in Fielde XX X X X X X PPOPX X X X X X X X X X XIQID P X X X P X X X X
11.1 Electron Source and SEp® dX X X X X X X XPXIOXXDIKDK XK X X X dIXK X X

11.2 Capacitor and Electric FieXd® dXXXX X X XXX AbD X X X XDXE X X E0R

11.3 HelmholtzCoils and Magnetic FiekKl® @ X X X X X X X X &% &KX X X03

114 The ElectronX @ @ X XXX X X PX X X X X X X X X X X DMK XO4X X d X X X

Texsand Related Topics X X X @ X X X X X X ® ® X XOOXOKOOONKX D X0B X X

12.1 Operations on Stringd X X X X X X W X X X X X XX XB & X X X X1E6X

12.2 VigenéreEncryptionXX X X X X X X X X X X X X X X X XO0OXXXXX X0

12.3 DNASequencingd X X XHXEE X X X DX X X X X X XX X X X X X1X

12.4 Text Files an&requency Analys® @ @ XXX X X X X X XXX K3

12.5 SQEDatabasesP D PEKEK K X X X X X X X X X X X X X X X XXX R X X d X

12.6 TasksK X X XXX X X X X X X X X DD D P X X X X X X XKIRKM2B X X X X X X X

Content 6

13 ComputerAlgebra:Functional ProgrammngX X.X X X X X X X X X X 3XXP2R4
131 Function TermX & BXK X X X X X
13.2 Parsing of Function TermeX X X X X X X X X X X X X X X © XXX 26X X X X
13.3 Derivation of Function TernB @ X X X X X X X X XXX ® R X X X XLX9X
13.4 Calculation of FunctioResultsand Graphsg(X XX XX X &XPX X X X X X31
135 TasksX X X XXX X X X X X X X X X X X X X X X XXX DRI X X

14 Artificial Plants: 1SystemsX X X X X X X X @ X X X X X X X X X XXX X X35
141 L-SystemX X X X X X X X PX X X X X XX X X X X X X X XX MEbX X X X X X X X
14.2 Create the Drawing Instructioh @2%XX X X X X X X X X @ ® X XXDRDPK 36X X X X
14.3 The Stack Operations @ MPXXX X X X X X X X X X X X X ® PORKMI6EX X X X
14.4 Drawing the PlantEX X X MO X X X X X X X X X X X X X X X X XA D P X X X X
145 TasksX X X XXX X X X X X X X X X X X X X X X X X X XIKMIBX X DD X X X

15 Automag X XX X X X X X @ X X KX XK KX X X P X X X X X XXROMDK H 39D X
15.1 Correct MailAddresseg{ X XX X X X X X X X X X X X X X PR KKEIX X
15.2 Hyphenation: Kevin SpeakX @@ X X X X X X X X X X X ® OXOKEHPIX X X X X X
15.3 Coupled Turing Machine§ 2. X X X X X X X X X X XX@D X X X X 46
15.4 CellularAutomata: Iterated prisoné@ dilemmaX X XXX 3 X XXX X X 249
15.5 TasksX X X XXPXOX XXXKKER X X X X

16 ProjectsX X X X X X X X X X PP X X X X X X X XD X X X X X 36X X
16.1 LOGQdor the POOIX X X X X X X X X P DX X X X X X XXX X X XLE6eX X X
16.2 SnapMindebyWSy & al yXX T X X ®#H X X X X XOKXK X X XU&3X

16.2.1 Importing Table DatxX X X X X XX XpXPdX X dXDOXXX XK XPX 264
16.2.2 The SnapMinder DataX X X X X X X @ X P O X X @ ¥ X X XL.85
16.2.3 The SnapMinder Countrige X X X X ® X @XHOXXXIXPOK X X1L&7
16.2.4 UseSnapMindetX X XXdX X X X X X © X GHOOXXIHKIRXOXIX D68
16.3 Connectivity: The World is SmailX X X X X X X X X X X X XXX K69
163.1 Random Network¥X X X X X X X @ X O O X X X ¥ X X X X X.70
163.2 Scalefree NetworkX X X X X X X @ X GXBOXXXIXDOOOOKNXXAKT 1
163.3 The ImplementationX X X X X X X @ X ® ® X X ¥ X X XXM 1
164 9 @2f dziA2Y XPDXXXXX XXX X X XK FEXXKX D X X X
16.5 Using the Sensorboard Callioged X XXPX X X X X X XXX X X X X X3X
16.6 Rate Websites: PageRaXdK X X XXX X X X X X X XXX X X X X 28X

17 Atthe Supermarkek XX X X X X X X X X X X P X X X X X X ® X XOOKHBE X X X X X X
17.1 Warehouse Management with SQLKe® @ X X X X X X X X ®. XXX XX X X
172 The Scanning Cash RegigfeX X X X X X X D X HH X X X X X X X X9& X X
17.3 The Smart Scal X X X X X X X @ X ® P X XXXK XXX DXDOKRCKK 3 S
17.4 LicensePlate RecognitioXX PXFHDX X X X X X DX P D X X X XKKKPOD X X X
17.5 TheAdvertisingDepartmentX @ X X X X X X X X X X X XXPX%H X ¥ ZPR6K X X

About the Notation ofSnap!Programs{ X X X X @ X X X X X X X X X X X X XB8X X X X X ®d X X
HowtoX K XXXXXXXBHEXXXXXXDOXXXXXXXXXXXXZIRMXXXXXDPDX X X
LYRSE XXXXXXXXXDOXXXXXXDOXXXXXXXXXXXRIERXXXXXDDXXXXXXX

1 CS and Media Sties 7

1 CS and Media Studies

In schools and universities, there is a lot of discussion about nlieghiacy as part of the
"digitization offensive". Since the term "digitization" obviously concerns computer science,
CS should participate in the discussion. Educational institutiond teeehink carefully
about their contribution to a comprehensive education. On the one hand, children and
adolescents also gain knowledge and experierangl in many areas predominantput-

side of these institutions; on the other hand, the objective%snfucation” and ‘vocational
training’ should be sharply differentiated. Adolescents do not necessarily have to master
the handling of current tools, they can confidently leave that to the ad@tt they must

be prepared to take othe appropriaterole with future tools.

It is often argued that learnemsustlearn to use modern media to lose the "fear of them".

| think that is wrong. First, children and adolesceats usuallysimply curious and not
afraid of media. Second, they learn to handle mediakjyiand easily by others and by
use. The fear is more on the side of the elderly, who did not grow up with this technique
and therefore feel insecure with it. Older people should remember that in their ydiuy,

had a hard time showing their elders hdw use a computer mouséVe can learn from

this situation that the handling of current technologguch as smartphonescan be ac-
quiredby the way, bubbviouslythis does not leadutomaticallyto an uncomplicated use

of future technology.

Goal 1: Learners need to be empowertmunderstand the basics of future technologies
and to acquire their use.

Media usage is not the same as media consumption. The passive use of media of whatever
kind, e.g. simple '@wkind', cannot be the goal of the educatiansystem. When we en-
gage with media, they must be in a context that activates learners.

Goal 2: Learners need to be empowered to select and deploy tools to create media based
on their problemSo,they firstmustlearn how to solve problems independently.

Independent problem solving usually is not seen as a central task, at least in schools. Cre-
ative subjects such as art, music gntbst)languageghopefully)at least sometimes strive

for this. All too often,éwell-behaved learning isghe primary goalCScanprovide tools to

realize and test one's own ideas even in relatively rudimentary form. Not to realize creative
lessons would be a missebdance. However, this will only work if the teachers themselves
have experiences in independent, creative praiisolving, and if they trush the learners
accordingly. If teachers only halearned CS contenih a"well-behaved way, then crea-

tivity in the classroonis hard to achievelf the second goal is to be realized in schools, this
should and must also hawensequences for teacher training at universities.

Goal 3: Teachers need to be empowered to plan and realize creative le$$@mns.should
be opportunity andtime in their ownstudies

Modern media such as social networks have profoundly changed sésiadmmunica-

tion, etc. The consequences are hard to predict while this prodeds/ i A ydzSa | yR O2dzZ Ry Qi
be imaginedoefore it started. It wouldbvertax anyteacherif it was demandedhat they

address the actual social consequences of computer sciencensyst the classroom

which include the impact of digital media. That would not be expedient, because the view

1 CS and Media Studies 8

2y GoKF(G KFra KFLIWSYSRé ySOSaalNrRfe Aa 0dNYy

show that the use of computer systems has social consexpgeand that these depend
very much on how the systems are designed. Different problem solutions have different
consequencesand vice versa: If certain consequences are undesirable, then it will usually
be possible to find another technical problem sdabat

Goal 4: Learners need to know that there are almost always different solutions to prob-
lems. You should think about their effects, which of course are not conclusive. They
learn that these effects are not given but can be shaped.

Why does this affecinap!?

Graphical programming tools likenap! do not only contain the algorithmic components

of any programming languagthey are alseembedded in a media environmetiiat not

only allowshe use of graphics, sound, ... but requires it. When a probleraridlbd, cam-

eras and graphics programs can and should be used to create the appropriate costumes
and costume changes that visualize the current state of the system. Sound programs make
it possible to comment on the course itself, to edit and insert musio design it yourself.

And, of course, the results must be presented because product pride is an important mo-
tive for the dedicated work. And there is much interest in the results of otHgnsp!

allows algorithmic problem solving avaryhigh level, It it not only allows the analytical
approach, but also the playful, the experimental, the creativéNat.allowed is passivity,
because nothing happens by itself. Media are essential system components, e. g. to visu-
alize the results and they can also be the result itsebnap! therefore offers the oppor-

tunity to model problem solutions for current probites, also and especially in tHeld of

media. The selfreated algorithmic framework of the model creates understanding of the
observed processes in real life. The experience of being able to gain this insight enables
active, critical analysis of futuret¢hnology. The examples in this book are intended to
show that this is possible in many areas using elementary methods. They should encourage

you to get started yourself.

S

Pl

2 About Snap! 9

2 About Snap!

2.1 BlockCOriented Languages

Snap!3is a successor @&YOB (Build Your Own Blocksvhose name already describes
part of the program: the users at schools and universitiesaxggting commands in the
form of blocks and are enabled to develop own new blocks. Their progiseript§ are

combinations of both. You must know that almost all programming languages are block

oriented: command sequences can be grouped with a new nafhe. resulting new com-
mands can use valuepgrameter$ to work with if needed, and they can return results.
This gives us several advantages:

i Programs become shortebecause program parts are swapped out into the blocks. Agyantages of
Multiply used command sequences are written only once and then reused under th plock-oriented

new name.

1 Programs contain fewer errorbecause blocks are developed and tested largely inde-
pendent. The developed commd sequence thus remains short and clear. "Long" pro-
gram parts are rarely necessary and usually a sign of poor programming style.

9 Programs get their own stylbecause the new commands reflect the wagrogram-
mer solves problems.

1 The programming languages iextendedbecause the created blocks represent new
commands and thus new possibilities.

2.2 ObjectOriented Languages

When dealing with more extensive problems, the number of subproblems to be solved

increases. Often these can be combined to groups wtechbe assigned to concrete ob-

jects. Often, these suproblems appear time and again, so they can be solved when ap-
propriate objects are provided, e. g. in libraries. An important aspect of this way of working

is that it allows teamwork to be carried outll, with the different teams creating objects
that solve part tasks. Of course, the results muspbetogether. The objecriented ap-

languages

proach is often realized by creating classes that describe the behavior of a group of similar

objects.From theseclas®s instancesare createdhat are supposed to solve the problems.
In contrastSnap! realizes grototype-based approachFor each objecan example, the
prototype, is generated and tested step by stépone is satisfied with the result, further
objectsof this kind are derived by duplicatioal@ning of the prototype.This way is better
for beginners.

The objectoriented approach has following advantages:

Problems become understandableecause sulproblems can be assigned to objects and
(largely) solved independently.

Problems become cleardyecause the division into objects often corresponds to the intu-
itive view, so that "everyday knowledge" can be incorporated into the solutions.

3 http://snap.berkeley.edu/snapsource/snap.html

Advantages of
object-oriented
languages

2.2 ObjectCriented Languages 10

Problemadapted tools can be providedecause corresponding libraries exist or are cre-
ated.

Collaboration is facilitaéd because objecbriented work suggests the broader isolation
of problem solving so that the different groups are less disturbed.

2.3 Inheritance by Delegation

The concept of inheritance is central to objertented programming. It can be realized by
classes or by delegation. In the original article by Liebefiemo describes the prototype
oriented approach to delegation very early, objects are understood as -~
embodiment of the concepts of their clagr example,ie elephaniClyde

stands for eveything the observeknows abou@an elephantIf oneimagines

an elephantthere appears no abstract class of elephants, but jObtde.

Whenonetalks about another elephant, heréred, he describes it like this:

"Fred is like Clyde, just white.

I'm Clyde I'm Fred

What daes this approach mean for the learning process? If the learner only knows one
copy of a class (here: Clyde), the prototype completely describes his knowledge, an ab-
straction is pointless for him. If he later learns about other specimens and describes them
through modifications to the original, thus replacing some methods with others, changing
attributes and adding new ones, then slowly the image of the class itself emerges as an
intersection of the common propertiedlow the process of abstraction is compensible

for him and after a few attempts also feasible. Delegation thus is a process that maps the
learning process itself by creating prototypes instead of classes.

In Snap! we mainly work according to this principle, which is presented below in dgtail.
you really want, a class systaisocan be implemented.

In Snap! sprites are created as prototypes and equipped with the desired attributes and
methods. If their behavior has been sufficiently tested, clones can be generated dynami-
cally using thelone block.Each spritehas aparent (may benull) andchildren (also may

be null). Theparent property can be set and / or modifiddter, so the system of depend-
encies is dynamic. If the program stopdl dynamically generated clones are deleted,
which is beneficial.

cloning sprites

At first, a clone inherits (almost) all the attributes and methods of the mother object. This
is indicated by a "paler" representation in the palettes. If a sprite overrides inherited at-
tributes or methods, they replace those of the prototype, as usual. If you delete the over-
rides again, then the inherited appear.

4 Lieberman, Henrysing Prototypical Objects to Implement Shared Behavior in Object Ori-
ented Systems1986 http://web.media.mit.edu/~lieber/Lieberary/OOP/Delegation/Delegation.html

2 AboutSnap! 11

2.4 Whatis SnapP

Snap! was (and is) developed IBrian Harveyand Jens Monidor the projectBeauty and the developers
Joy of Computirtgand is made freely available on the internet. Since the system runs in

the browser, it does not require any installation and works on almost all dévitéssim-

ilar in surface and behavior ®cratch’, a free programming edironment for children de-

veloped atMIT®. However, theconceptsimplementedin Snap! go far beyondScratch

and have their roots in decades of teaching CS at MIT Sdtieme, a LISP language. origins at Lisp
They are introducee. g. ina famous textbook byarold Abelsorand Gerald and Julie

Sussmah Snap! is thus a fully developed programming language that can be fmed

(almost) all problera For most, it is sufficiently fasbw. That is not selévident and was

a shortcoming of their predecessors. Graphical langsiage largely concerned with con-

trolling the state of the system. For example, to allow you to interrupt endless loops or to

"tolerate™ access errors to data structureBhere remains little timedr program execu-

tion.

Snap!is a graphical programming language: programs (scripts) are not entered as textk barely
composed of tiles. Since these tiles can only be joined together if this makes sense, "n syntax errors
spelled" programs are largely prevent&hap! therefore is largely syntaftee. Neverthe-

less, it is not entirely free of syntax, because some blocks can handle different combina-

tions of inputs: if you combine them incorrectly, errors can occur. Howeverntbgly

happenswhen using very advanceshap! concepts.If you apply these,qu should know

what you are doing.

Snap! is extremely "peaceful”: mistakes do not lead to program crashes but are indicated

by the appearance of a red marker around the tiles that caused the emdthout dra-

matic consequences. The used tiles, which include the newly developed blocks, always

"live". They can be executed by mouse clicks so that their effect is directly observable. This

makes it easy to experiment with the scripts. They can be testeahgegd, broken down

into parts and put together the same or different. This gives us a second access to prc styles of
gramming: in addition to problem analysis and the associtdpedownapproach, the ex- programming
perimentalbottom-up construction of subprograms, which can be put together to form a

complete solution.

Snaplis clear: both program sequences and assignments of the variables can be display ivid and expandable
and tracked on demand on the screen.

Snap! is extensible: with the implemented IBSoncepts, new control structures can be
created, e. gto work with special data structures.

Snap! is objectoriented, even in different ways: Objects can be generated by creating et oriented
prototypes with subsequent delegation, as well as ffedént ways by classes.

5 https://bjc.berkeley.edu/

6 These are, of course, computers, tablets, smartphones, ...

7 http://scratch.mit.edu/

8 Massachusetts Institute of Technology, Boston

9 Abelson, Sussman: 8ktur und Interpretation von Computerprogrammen, Springer 2001

2.4 What isSnap! 12

Snap! is firstclass: all structures used are fiudtss, so they can be assigned to variables

or used as parameters in blocks, can be the result of a function block or content of a data
structure. Furthermore, they may be unétl (anonymous), which is important for the im-
plemented aspects of the lambda calculus, the basis of LISP. Consequently, the logo of
Snap! containsthe same proud Lambdavhich buildsthe hair of Alonzo, the mascot of
BYOB. Alonzo

Snapp!

2.5 What Snaplis not!

Snap! is not a tool for professional software productionstarted asa technology study
commissioned by the American Ministry of Education under CE@muting Education
for the 21st Centuly which is alsaesigned to reduce the dreput rate in technical sub-
jects. Itis a tool to implement and test CS concepts by way of example.

the limits

Snap! primarily is used for work in the field of algorithms and data structures. Due to the
browser environment, essential areaBapmputer science such as access to files or hard-
ware can be embedded vextensions bugare not (yet) part of the core language. How-
ever, the builtin url-block allows in the meantime quite easy access to the Internet and
thus using intermediary servets databases or external hardware. Both are included in
the book.

Since the code dbnap! is freely available, there are differemersions, sometimes with
substantial modificationd/Vhetherthisis a curse or a blessirig a question of perspective,
as we shall see

2 AboutSnap! 13

2.6 TheSnap!Screen

. Snap! Build Your Own Bl % ' [§ Snap!4.1 Reference Mer X
< C' | ® Nicht sicher | snap.berkeley.edu/snapsource/snap.htm! *| i
[& 4} zero knowledge protokoll

0 e

T &SN [7 dmggeble

Scripls Costumes ~ Sounds

{ contral

|set n | to gl
[sets (0@
ety oI) mod @

5ot 1[to pick random €L to &LD
ERtio-or=

TheSnap!-Screen consists of six sections below the menubar

1 On the far left are the command tabs, divided into the categoNdion, Looks,
Sound and so on. If you click on the corresponding button, the tiles of this category are
displayed belowL ¥ (i K $it&ll oR the/sréen, you can scriie screen arein the
usual way.

9 To the right, in the middle of the screen, thameof the object currently being edited
as well as some of its properties are displayed. The default name of the spritamdn
should- be changed here.

1 Underneath is an area in which, depending on th® thescripts costumesandsounds
of the sprite can be edited or created.

9 At the top rightis theoutput windowwhere the sprites move. This can be resized using

Sprite-bezogene
Einstellungen

the buttons above or via the entry in the tool mertstége size).. E

1 Atthe bottom right,the sprite coral displays the sprites. If you click on one, the middle the tool menu
section changes to its scripts, costumes or sourdépending on the selection.

1 The menu bar on the left offers the usual menus for loading and séwngroject as the menu bar

well as individual sprites. Furthermore, many settings can be made. One possibility is
to set the language. Nevertheless, | recommend that you stay with the English version,
as it is possible to differentiate your own bloctied e. g. in German, from the native
ones at first glance.

1 On the far right we find the green flag known from Scratch, with which several scripts
can be started at the same tinvehen using the corresponding block. The pause button
next to it pauses everything accordingly and the red button stops all running scripts.
Individual scripts or tiles can be started simply by clicking on them.

10 The division of the areas can be changed vn

2.7 AnExample forexperiencedUsers: Flu 14

2.7 An Example forExperiencedUsers: Flu

Seagt Buld Your Oun | X e - o x
€ C aso 12 snsp.berkeley edu

oot CITEELTITD

The example simulates the spread of a flu epidemic under different conditions. It provides
a quick overview of the essential featuresSyfap! and is intended especially for experi-
enced programmers. Beginners should read the next chafitst.

The question is which proportion and which special groups of people in a population should

be vaccinated if the spread of a flu epidemic is to be stopped. The question is not so easy

to answer, because the outcome depends onesal/parameters: thdikelihood of infec-

tion indicates how probable the infection of a healthy person in contact with a sick person

is, the seroconversion times the time between infection and immunization, thembers

of healthy and diseased persaatshe beginning of the simulation determines the number

of contacts between them, and the number miultipliersindicates how many people in

the population have particularly large numbers of contactsamtacts toparticularly dis-

tant groups. If one of therhecomesdnfected,e. g.the disease wilbeworn in distant areas.

Since contacts, infectionX, are randomized, we will only achieve sustainable results if we three prototypes
perform the simulation multiple times with the same parameter valuasdafter thatwe for three groups
still mustdiscuss which valuggpresent "results” in the sense mentioned. That's why the

topicis perfect for a small classroom project. A "control group" developshitjeerlevel

scripts in this caseassigmrd to the stage. It designsthe task distribution with the other

two groups.The other groups develop the prototyppsrson andgraph, which are largely

independent of each other.

2 AboutSnap! 15

2.7.1 Writing YourOwn Methods

At various pointst is necessaro get rid of the clones of a prototype without exiting thel i
program. We achieve that by a new methddlete all clones of <prototype>. It is a
Command block, which is a commanwidith (in this case) one parametgFunction blocks
are calledReporter in Snap!.) New blocks are written in the block editdt can be started
with the buttonsMake a blockve find in thepalettes orc the fastest way, by rightclicking == <=

on the script layer and calling it from the contextmeFirst,we specify the method name, @1—“"’”_““&
if desired with blanks and special characters, select the tgmnimand, Reporter, or J :
Predicate) and indicate whether @ a global "for all sprites") or local (for this sprite
only") method. We can alschoosethe palette to which the block is to be included. | dd i Uiy
not recommend this: Theest placeto find the gray selwritten blocksis the bottom of e
the Variables palette. For example, if you evaluate student programs, it is often a probl
to find the newly creatd blocks at all.

m Cancel |

¢

After pressing the return key, the Block editgpens,and the block name appeacswith oy Gy =0
+ characters in the spaces and margins. There, we can open another menu

by mouse clicks, which allows to insert parameters in these places a
assign types tahem if necessary. In our case, we click on the far right, er
the parameter identifieprototype and click the small right arrow to specif

Create inp

b © /I -
the typing.After thata selection box opeAs We choose as typ@bject(the © I e
arrow), come back into the Block edit@nd drag the required command: e :7“’:""

into its script area.

@ Mt inputs (vaue s list o inputs)

Our method uses two script variabledgnes andthisClone) known only in [FyEreh-—"e"s

this block. It asks the parametprototype, which later is passed with a ref
erence to the prototype of all persons, for its descendagtthese are all
occurring dynamically generated "persots'As long as these are still avail-

able, it willstorethe first in one of the script variables, delete them from th
list, and then ask thatgrson to delete themselves, with script variables | clones | thisClone

tell <thisClone> to <delete this clone>*2,

1} Cancel |

11 This box is described in detail in the smaference manual that you get when you click the
Snap! icon on the togeft of the window.

2The clones created statically through the context menu in the sprite area are not found
there.

13 The delete block can only be found in the palettes of the sprif@si can reach it in the
stage via the search function at the top of the palette area.

2.7 AnExample forexperiencedJsers: Flu 16

2.7.2 Elementary Algorithmic and Variables

To define the parameters and other control values, we usestage, which we click in the ATAETE T
sprite corral. Thisesponds to the messaggd” by setting the initial parameters and de- [peron

termining which quantities are to be measured in the simulations. Thereaferespond- D forallsprtes ") forthis sprte only
ingsimulation runs are started. Ok _Cancel)

In detail: Since initially only the prototygeerson is availablewe "fish"for him usinghe
blockmy <other sprites> from the Sensing palette. The prototype is the first element of | setete a ariavie

the received list. We stori¢ in the global (for all Sprites)' variableprototype person that (data

we created previouslyin the Variables palette. We also created all the other required
variables via théMlake a variable button, with the ones needed only within thgage :j%"’" el
being marked as localf@t this sprite onl¥). You can recognize them at the "marker" be o tod = ==
fore the name. The others are glob&lobal variables are displayed at the top of Yfaa- '}%
iables palette, then follow the locabnes The output area isleared(there might be an

old graphic), some variables get appropriate initial values and a list ciltado record

the simulationresults will be deletedset <data> to <list>). This part could have been i

well outsourcedto a separate block, but since we want to experiment with the varial =7
s . " " M @ initial value immune normals

values, it is better if they are "on the table". n T

M @ number of simulations

Make a variable

|

M number of immune normals
M number of infected multipliers
M number of infected normals
|

In the following, the
number of initially va-
cinated (theimmune
normal) is increased S ems———“eyyy

from zero to 100 in [Fewsmssssig S| sstinfialvale
steps. We find the con-|= i eeioe
trol structures for this | B DRI 0
in the Control palette. & REESELTESEs
For each value, a serief e Sl
of simulation runs is ot
performed, and the
mean value is deter-
mined from the results
(here: the maxnum || = B 0
number of infected). set fmshed? |to @taise
The variablenumber | &

of simulations deter-
mines how often this

set protolype person to | item @) of ' my other sprites ~
anchor to clear the clones

repeat until - (initial value immune normals > fiI] . B4
—_) _) -
|5d average | to [J start simulations for different vaccination rates -
-

perform several simulation runs in each case

A
[_;ﬂ until finished? start a simulation

w

measured here is the number of infected persons -

h

tered as a percentage
in the data list. Finally, § =
N EIET NS LRIl || round ((average / initial value persons | {§Iu)
be asked to Create a i

graphic.

enter the resultin the list

[_(:I_limge iniial value immune normais | by &P

delete all clones of | prototype person
b4

draw diagram -

2 AboutSnap! 17

2.7.3 Creating Objects

In addition to thescript already described, the control
program uses another onaimulate. In it, some initial 9 simulate

values are reset, and the corresponding number of p ,Se' number of infected normals | ta
sons are generated, which differ in typeomal, multi- 9 create a person of type: [EE] and status: el
plier) and statuslfealthy, infected, immune). After that ileteld e
the simulation run isstarted by sending the message
"come on" which is heard by all objects in the system. =

How to create objects? e T T T D
In the method wecreate a person type: <type> and W create a person of type: (] and status: [T
status: <status>. A local script variablg references a s rr—
newly created clone of the specified prototype. Afte s @il ey = o r e e
that, the clone is present, visible aratcessiblainder | el SR R T
the namep ¢ quite simpe. PG, cemboriof Reaitey nonmaty

| § create a person of type: [IIF] and status: [TE0]
However, the clones should differ in type and status. F_
this, they contain (&re) a local method inherited from s Bt Sl a0
the prototype setup <status> <typ>. We have to call &4 number o mmune mutters | to
these with the given parameter values. We therefor™
"tell" the objectp that it should execute this method. As
this is local to persons, we take tkattribute> of <ob- & .
ject> Block from theSensing palette, select the proto- (oo @ g
type in the righthand box (herePerson) and after that
in the left box the desired method (hergetup). Because

two parameters are to be specified, we expand the blo. =20 01 BCHEEY) G0

script variables | p

5él p tolanew clone of Person

with the small arrow keys and egit status and type be-
hind with inputs. The block is to be understood gg, "
please execute in your context of methods and variables
the method passed with the specified parameteiiche
block is equivalent to the wellnown dot notation of the
OOP languagep.setup(status,type);

invoked methodsn Person

