

Eckart Modrow

 Computer Science

 with

ς Snap! by Examples ς

© Eckart Modrow 2018

emodrow@informatik.uni-goettingen.de

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike

4.0 International License. It allows download and redistribution of the complete work with

mention of my name, but no editing or commercial use. In addition to the book, the com-

plete listings of the described programs are loadable from the following address:

http://emu-online.de/projectsOfCSwithSnap.zip

The scripts are developed with Snap! 4.1.2.1 Build Your Own Blocks.

Prof. Dr. Modrow, Eckart:

Computer Science with Snap!

- Snap! by Examples -

© emu-online Scheden 2018

All rights reserved

If this book is helpful for you and you would like to express your appreciation in form of a

donation, you can do so at the following PayPal account:

emodrow@emu-online.de

Intended use: Snap! book

This publication and its parts are protected by copyright. Any use in others than legally permitted cases

requires the prior written consent of the author.

The software and hardware names used in this book as well as the brand names of the respective companies

are generally subject to the protection of goods, trademarks and patents. The product names used are pro-

tected by trademark law for the respective copyright holders and cannot be freely used.

This book expresses views and opinions of the author. No guarantee is given for the correct executability

of the given sample source texts in this book. I assume no liability or legal responsibility for any damages

resulting from the use of the source texts of this book or other incorrect information.

Preface 3

Preface

This book, similar to its predecessor "Informatik mit BYOB"1, uses a collection of program-

ming examples to explore the scope of the graphical language Snap!. It does not replace

a textbook that conveys CS content but shows how to use Snap! to apply CS methods.

After Scratch and BYOB, Snap! in the current version 4.1.2 is the next step in the devel-

opment of graphical tools. The system overcomes several limitations that existed with its

predecessors, so it overcomes many arguments against graphical languages. The current

version has been expanded by numerous extensions in the field of object-oriented pro-

gramming (OOP). It can meet and exceed all requirements up to high school and beyond.

Since drastic improvements have been achieved at the execution speed and availability of

libraries in different fields like pixel access, audio or use of external resources, there are

hardly any restrictions in applications. Particularly noteworthy in this area is the possibility

to use Java-Script functions, e.g. for time-critical operations or extensions within Snap!.

The libraries contain numerous JavaScript-examples.

The selection of problems in the following chapters is relatively conservative, partly based

on existing computer science lessons, but it goes beyond that. That's intended. I hope, on

the one hand, to convert teachers using traditional lessons, and on the other hand, to pro-

vide contexts that brings sense from the perspective of a learner to the information to be

acquired. In this way, teaching should be very much based on CS concepts AND creativity.

The examples describe in detail the handling of Snap! in different aspects. After an intro-

ductory chapter that gives a fast overview about Snap!, the first few chapters explain the

features of the language, followed by sections without any obvious application. This com-

promise is due to space requirements, because advanced concepts require extended prob-

lems. The examples are not hierarchically ordered, so in the second part are also rather

simple ones. At the end of the book there are summaries of the methods used in the ex-

amples and an index.

This book is a translation from German. Unfortunately, I do not speak English well, so it will

be bumpy. I apologize for that. But all of the programs had to be changed ς a task that I

really had to do. Be strong and hold it! Many thanks for the wonderful help of the DeepL2

translation program. I would probably never have finished without these.

I would like to thank Jens Mönig for his support - and for the results of his work. The learn-

ers will be thankful!

I wish you a lot of fun working with Snap!.

Göttingen, am 1.4.2018

1 E. Modrow, Informatik mit BYOB, http://ddi -mod.uni-goettingen.de/Informatik%20mit%20BYOB.pdf
2 https://www.deepl.com/translator

Content 4

Content

Preface ΧΧΧ.ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ.ΧΧΧ 3

Content ΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧ 4

1 CS and Media Studies ΧΧΧΧΧΦΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΦΦΧΧΧ 7

2 About {ƴŀǇΗ ΧΧΧΧΦΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧ.ΧΧΧ 9

 2.1 Block Oriented Languages ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧ 9

 2.2 Object Oriented Languages ΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧ 9

 2.3 Inheritance by Delegation ..ΧΧΧΦΦΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 10

 2.4 What is {ƴŀǇΗΚ ΧΧ...ΧΧΦΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 11

 2.5 What is Snap! not? ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 12

 2.6 The Snap!-Screen ΧΧΧΧΦΦΧΧΧΧΦΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 13

 2.7 An Example for Experienced Users: Flu ΧΧΧΧ..ΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΦΦΦΦ 14

 2.7.1 Writing Your Own Methods ΧΧ.ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΦΦΦΦ 15

 2.7.2 Elementary Algorithmic and Variables ΧΧΧ.ΧΧΧΧΧΧΧΧΧΧΦΦΦΧΧΦΦΦΦ 16

 2.7.3 Creating Objects Χ..ΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΦΧΧΦΦΦΦ 17

 2.7.4 Communicating with Objects ΧΧΧΧΧΧ.ΧΧΧΧΧΦΧΧΧΧΧΦΦΧΧΧΧΦΦΦΦΦ 18

 2.7.5 Drawing a Diagram ΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΦΧΧΦΧΧΧΧΧΧΧΧΧΧΦΦΦΦΦ 21

3 Simple Examples ΧΧΦΧ..ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΦΧΧΧΧ 23

 3.1 Swimming ΦΦΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΦΧΧΧΧΧ 23

 2.2 Solar System ΧΧΧΦΦΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΦΧΧΧΧΧ 25

 2.3 Caesar Encryption ΧΦΦΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΦΧΧΧΧΧ 27

 2.4 Tasks ΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΦΧΧΧΧΧΧΧΧΧΧΦ.ΦΧΧΧΧΧΧΧΦΧΧΧΧΧ 29

4 Simulation of a Spring Pendulum ΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΦΧΧΧΧ 30

 4.1 Organization of Cooperation ΦΦΧΧΧΧΦΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΦΧΧΧΧΧ 30

 4.2 The Clock ΧΦΦΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΦΧΧΧΧΧ 32

 4.3 The Exciter ΧΦ.ΦΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΦΧΧΧΧΧ 32

 4.4 The Thread .ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΦΧΧΧΧΧ 33

 4.5 The Ball ΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΦΧΧΧΧΦΧΧΧΧΧΧΧΦΧΧΧΧΧ 33

 4.6 The Pen ΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΦΦΦΧΧΧΦΦΧΧΧΧΧΧΧΦΧΧΧΧΧ 34

 4.7 ²Ƙȅ ƛǎ ƛǘ ŀ ǎƛƳǳƭŀǘƛƻƴΚ ΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΦΦΧΧ..ΦΦΧΧΧΧΧΧΧΦΧΧΧΧΧ 34

5 Troubleshooting with {ƴŀǇΗ ΧΧΧΧΧΧΧΧΦΦΦΧΧΧΧΧ..ΧΧΧΧΧΧΧΧΧΧΦΦΧΦΧΧΧΧ 35

6 Lists and Related Structures ΧΧΧΧΦΦΧΧΦΧΧΦΧΧΧΧΧΦΧΧΧΧΧΧΧΦΧΧΧΦΦΧΧΧΧΧ 37

 6.1 Selection Sort ΧΧΧΧΧΧΧΧΧΦΦΧΦΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 37

 6.2 vǳƛŎƪǎƻǊǘ ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 39

 6.3 Routing with Dijkstra Method ΧΧΦΧΧΧΧΧΧΧΦΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 40

 6.4 Matrices and FOR-Loops .ΧΧΧ..ΧΦΦΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 44

 6.5 Tasks ΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΦΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 46

7 Object-Oriented Programming ΧΧΧΧΦΧΧΧΦΦΧΧΧΧΧΦΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧ 47

 7.1 Anne and the Filing Cabinets ΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 48

 7.2 Magnets ΧΦΦΧΧΧΧΧΧΧΧΧΧΧ.ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧ 52

 7.3 A Learning Robot ΧΧ.ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΦΦΧΧΧ 53

Content 5

 7.4 A Digital SƛƳǳƭŀǘƻǊ ΧΦΦΧ.ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧ 57

 7.4.1 Sockets and Connections ΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧ 58

 7.4.2 Switches ΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧ 59

 7.4.3 Gates ΧΦΦΧΧ..ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧ 60

 7.4.4 The Pen ΧΦΦΧΧΧΧΧ.ΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧ 60

 7.4.5 [95ǎ ΧΦΦΧΧΧΧΧ.ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧ 61

 7.4.6 The Interaction oft the Components ΧΦΧΧΧΦΧΧΦΧΧΧΧΧΧΦΧΧΧΧΧ 61

 7.4.7 Tasks ΧΦΦΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧ 62

8 Graphics ΧΧΧΧ..ΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 63

 8.1 Line Graphics ΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 63

 8.2 Pixel Graphics and RGB Model .ΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 66

 8.2.1 Pixel Graphics with the Pixels Library ΧΧΧΧΧΧΧΦΦΧΦΦΧΧΦΦΧΧΧΧΧΧ 66

 8.2.2 Pixel Graphics with an own Library ΧΧΧΧΧΧΦΦΧΦΧΦΦΧΧΧΧΧΦΦΦΦΧΧΧ 68

 8.3 The Light of the old Stars Χ.ΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 70

 8.4 A simple RGB Color Mixer ΧΧΧΧΦΧΧΧΧΧΧΦΧΦΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 71

 8.5 5ǊƛǇ tŀƛƴǘƛƴƎ ΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 72

 8.6 Edge Detection ΧΧΧΦΧΧΧΧΧΦΧΧΧΦΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 74

 8.7 Tasks ΧΧΧΧΧΧΧΦΦΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 76

9 Image Recognition ΧΧΦΧ..ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΦΧΧΧΧ 77

 9.1 A Barcode Scanner ΦΦΧΧΦΦΧΧΧ.ΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧ 77

 9.2 Project: Transit Prohibited! ΧΦΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧ 82

 9.3 Project: Face Recognition ΧΦΦΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧ 88

 9.4 Tasks ΧΦΦΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΦΧΧΧΦΧΧΧΧ 94

10 Sounds ΧΧΦΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧ 95

 10.1 Find Sounds ΦΦΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧ 95

 10.2 Processing SoundsΦΦΧΧ..ΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΦΦΧΧΧ 96

 10.3 Making Music ΦΦΧΧΦΦΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧ.ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧ 97

 10.4 Project: Hearing check ΦΦΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΦΧΧΧΧΦΦΧΧΧ 99

 10.5 Tasks ΦΦΧΧΦΦΧΧ.ΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΦΧΧΧ 100

11 Project: Electrons in Fields ΧΧΧΧΦΦΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΦΧΧΧΧ 101

 11.1 Electron Source and Set-Up ΦΦΧΧΧΧΧΧΧΧΧΧΧΧΦΦΦΦΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧ 101

 11.2 Capacitor and Electric Field ΧΦΦΧΧΧΧΧΧΧΧΧΧΦΧΧΦΦΧΧΧΦΦΧΧΦΧΧΧΧΧΧΧ 102

 11.3 Helmholtz Coils and Magnetic Field ΧΦΦΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΦΧΧΧΧΧΧΧ 103

 11.4 The Electrons ΧΦΦΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧ 104

12 Texts and Related Topics ΧΧΧΧΦΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧ 106

 12.1 Operations on Strings ΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧ 106

 12.2 Vigenére Encryption ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 109

 12.3 DNA-Sequencing ΧΧΧΧΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 111

 12.4 Text Files and Frequency Analysis ΦΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 113

 12.5 SQL-Databases ΦΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧ117

 12.6 Tasks ΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΦΦΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 123

Content 6

13 Computer Algebra: Functional Programming ΧΧ..ΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧ 124

 13.1 Function Terms ΧΧΧ.ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧ124

 13.2 Parsing of Function Terms ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧ 125

 13.3 Derivation of Function Terms ΦΦΧΧ.ΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧ 129

 13.4 Calculation of Function Results and Graphs ΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧ 131

 13.5 Tasks ΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΦΦΧΧΧΧΧ 134

14 Artificial Plants: L-Systems ΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧ 135

 14.1 L-Systems ΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧ 135

 14.2 Create the Drawing Instruction ΦΦΧ..ΧΧΧΧΧΧΧΧΧΧΦΦΧΧΦΦΧΧΧΧΧΧΧΧΧΧ 136

 14.3 The Stack Operations ΧΦΦΦΧ..ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧ 136

 14.4 Drawing the Plants ΧΧΧΧΧΦΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧ 137

 14.5 Tasks ΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΦΦΧΧΧΧΧΧΧ 138

15 Automata ΧΧ..ΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΦΧΧΧ 139

 15.1 Correct Mail Addresses ΧΧΧ..ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧ 139

 15.2 Hyphenation: Kevin Speaks ΧΧΦΦΦΦΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΦΦΧΧΧΧΧΧΧΧΦΧΧ 141

 15.3 Coupled Turing Machines ΧΦΦΦ......ΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧ 145

 15.4 Cellular Automata: Iterated prisonerΩǎ dilemma ΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧ 149

 15.5 Tasks ΧΧΧΧΦΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 155

16 Projects ΧΧΧΧΦΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧ 156

 16.1 LOGO for the Poor ΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 156

 16.2 SnapMinder by WŜƴǎ aǀƴƛƎ ΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 163

 16.2.1 Importing Table Data ΧΧΧΧΧΧΧΦΧΧΧΧΦΦΧΧΦΦΧΧΧΧΧΧΧΦΧΧΧΧ 164

 16.2.2 The SnapMinder Data ..ΧΧΧΧΧΧΧΦΧΦΦΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΦΧΧ 165

 16.2.3 The SnapMinder Countries ΧΧΧΧΧΦΧΦΦΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧ 167

 16.2.4 Use SnapMinder ΧΧΧΦΧΧΧΧΧΧΧΦΧΦΦΧΧΦΦΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧ 168

 16.3 Connectivity: The World is Small ΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 169

 16.3.1 Random Networks ΧΧΧΧΧΧΧΦΧΦΦΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 170

 16.3.2 Scalefree Networks ΧΧΧΧΧΧΧΦΧΦΦΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧ 171

 16.3.3 The Implementation .ΧΧΧΧΧΧΧΦΧΦΦΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧ 172

 16.4 9Ǿƻƭǳǘƛƻƴ ΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ176

 16.5 Using the Sensorboard Calliope ΧΦΦΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 180

 16.6 Rate Websites: PageRank ΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 182

17 At the Supermarket ΧΧ.ΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧ 188

 17.1 Warehouse Management with SQLite ΧΦΦΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧ.ΧΧΧΧ 189

 17.2 The Scanning Cash Register ΧΧΧΧΧΧΧΧΦΧΦΦΧΧΧΧ.ΧΧΧΧΧΧΧΧΧΧΧΧΧ 192

 17.3 The Smart Scale ΧΧΧΧΧΧΧΧΦΧΦΦΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧ 194

 17.4 License Plate Recognition ΧΦΧΧΦΧΧΧΧΧΧΧΦΧΦΦΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧ 200

 17.5 The Advertising Department ΧΦΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΦΦΧΧΧΧΧΧΧΧΧΧΧ 206

About the Notation of Snap!-Programs ΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧ 208

How to Χ Κ ΧΧΧΧΧΧΧΧΧΧΧΧΦΧΦΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧ 210

LƴŘŜȄ ΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΦΦΧΧΧ 212

1 CS and Media Studies 7

1 CS and Media Studies

In schools and universities, there is a lot of discussion about media literacy as part of the

"digitization offensive". Since the term "digitization" obviously concerns computer science,

CS should participate in the discussion. Educational institutions need to think carefully

about their contribution to a comprehensive education. On the one hand, children and

adolescents also gain knowledge and experience - and in many areas predominantly - out-

side of these institutions; on the other hand, the objectives of "education" and " vocational

training" should be sharply differentiated. Adolescents do not necessarily have to master

the handling of current tools, they can confidently leave that to the adults. But they must

be prepared to take on the appropriate role with future tools.

It is often argued that learners must learn to use modern media to lose the "fear of them".

I think that is wrong. First, children and adolescents are usually simply curious and not

afraid of media. Second, they learn to handle media quickly and easily by others and by

use. The fear is more on the side of the elderly, who did not grow up with this technique

and therefore feel insecure with it. Older people should remember that in their youth, they

had a hard time showing their elders how to use a computer mouse. We can learn from

this situation that the handling of current technology - such as smartphones - can be ac-

quired by the way, but obviously this does not lead automatically to an uncomplicated use

of future technology.

Goal 1: Learners need to be empowered to understand the basics of future technologies

and to acquire their use.

Media usage is not the same as media consumption. The passive use of media of whatever

kind, e.g. simple "gawking", cannot be the goal of the educational system. When we en-

gage with media, they must be in a context that activates learners.

Goal 2: Learners need to be empowered to select and deploy tools to create media based

on their problem. So, they first must learn how to solve problems independently.

Independent problem solving usually is not seen as a central task, at least in schools. Cre-

ative subjects such as art, music and (most) languages (hopefully) at least sometimes strive

for this. All too often, άwell-behavedέ learning is the primary goal. CS can provide tools to

realize and test one's own ideas even in relatively rudimentary form. Not to realize creative

lessons would be a missed chance. However, this will only work if the teachers themselves

have experiences in independent, creative problem-solving, and if they trust in the learners

accordingly. If teachers only have learned CS content in a "well-behaved" way, then crea-

tivity in the classroom is hard to achieve. If the second goal is to be realized in schools, this

should and must also have consequences for teacher training at universities.

Goal 3: Teachers need to be empowered to plan and realize creative lessons. There should

be opportunity and time in their own studies.

Modern media such as social networks have profoundly changed social life, communica-

tion, etc. The consequences are hard to predict while this process ŎƻƴǘƛƴǳŜǎ ŀƴŘ ŎƻǳƭŘƴΩǘ

be imagined before it started. It would overtax any teacher if it was demanded that they

address the actual social consequences of computer science systems in the classroom,

which include the impact of digital media. That would not be expedient, because the view

1 CS and Media Studies 8

ƻƴ άǿƘŀǘ Ƙŀǎ ƘŀǇǇŜƴŜŘέ ƴŜŎŜǎǎŀǊƛƭȅ ƛǎ ǘǳǊƴŜŘ ōŀŎƪǿŀǊŘǎΦ .ǳǘ ǿƘŀǘ ȅƻǳ Ŏŀƴ ŀǎƪ ŦƻǊ ƛǎ ǘƻ

show that the use of computer systems has social consequences and that these depend

very much on how the systems are designed. Different problem solutions have different

consequences - and vice versa: If certain consequences are undesirable, then it will usually

be possible to find another technical problem solution.

Goal 4: Learners need to know that there are almost always different solutions to prob-

lems. You should think about their effects, which of course are not conclusive. They

learn that these effects are not given but can be shaped.

Why does this affect Snap!?

Graphical programming tools like Snap! do not only contain the algorithmic components

of any programming language, they are also embedded in a media environment that not

only allows the use of graphics, sound, ... but requires it. When a problem is handled, cam-

eras and graphics programs can and should be used to create the appropriate costumes

and costume changes that visualize the current state of the system. Sound programs make

it possible to comment on the course itself, to edit and insert music or to design it yourself.

And, of course, the results must be presented because product pride is an important mo-

tive for the dedicated work. And there is much interest in the results of others. Snap!

allows algorithmic problem solving at a very high level, but it not only allows the analytical

approach, but also the playful, the experimental, the creative, ... Not allowed is passivity,

because nothing happens by itself. Media are essential system components, e. g. to visu-

alize the results - and they can also be the result itself. Snap! therefore offers the oppor-

tunity to model problem solutions for current problems, also and especially in the field of

media. The self-created algorithmic framework of the model creates understanding of the

observed processes in real life. The experience of being able to gain this insight enables

active, critical analysis of future technology. The examples in this book are intended to

show that this is possible in many areas using elementary methods. They should encourage

you to get started yourself. ι

2 About Snap! 9

2 About Snap!

2.1 Block Oriented Languages

Snap! 3 is a successor of BYOB (Build Your Own Blocks), whose name already describes

part of the program: the users at schools and universities use existing commands in the

form of blocks and are enabled to develop own new blocks. Their programs (scripts) are

combinations of both. You must know that almost all programming languages are block-

oriented: command sequences can be grouped with a new name. The resulting new com-

mands can use values (parameters) to work with, if needed, and they can return results.

This gives us several advantages:

¶ Programs become shorter because program parts are swapped out into the blocks.

Multiply used command sequences are written only once and then reused under the

new name.

¶ Programs contain fewer errors because blocks are developed and tested largely inde-

pendent. The developed command sequence thus remains short and clear. "Long" pro-

gram parts are rarely necessary and usually a sign of poor programming style.

¶ Programs get their own style because the new commands reflect the way a program-

mer solves problems.

¶ The programming language is extended because the created blocks represent new

commands and thus new possibilities.

2.2 Object Oriented Languages

When dealing with more extensive problems, the number of subproblems to be solved

increases. Often these can be combined to groups which can be assigned to concrete ob-

jects. Often, these sub-problems appear time and again, so they can be solved when ap-

propriate objects are provided, e. g. in libraries. An important aspect of this way of working

is that it allows teamwork to be carried out well, with the different teams creating objects

that solve part tasks. Of course, the results must be put together. The object-oriented ap-

proach is often realized by creating classes that describe the behavior of a group of similar

objects. From these classes instances are created that are supposed to solve the problems.

In contrast Snap! realizes a prototype-based approach. For each object an example, the

prototype, is generated and tested step by step. If one is satisfied with the result, further

objects of this kind are derived by duplication (cloning) of the prototype. This way is better

for beginners.

The object-oriented approach has following advantages:

Problems become understandable because sub-problems can be assigned to objects and

(largely) solved independently.

Problems become clearer because the division into objects often corresponds to the intu-

itive view, so that "everyday knowledge" can be incorporated into the solutions.

3 http://snap.berkeley.edu/snapsource/snap.html

Advantages of

block-oriented

languages

Advantages of

object-oriented

languages

2.2 Object Oriented Languages 10

Problem-adapted tools can be provided because corresponding libraries exist or are cre-

ated.

Collaboration is facilitated because object-oriented work suggests the broader isolation

of problem solving so that the different groups are less disturbed.

2.3 Inheritance by Delegation

The concept of inheritance is central to object-oriented programming. It can be realized by

classes or by delegation. In the original article by Lieberman4, who describes the prototype-

oriented approach to delegation very early, objects are understood as the

embodiment of the concepts of their class. For example, the elephant Clyde

stands for everything the observer knows about an elephant. If one imagines

an elephant, there appears no abstract class of elephants, but just Clyde.

When one talks about another elephant, here: Fred, he describes it like this:

"Fred is like Clyde, just white."

What does this approach mean for the learning process? If the learner only knows one

copy of a class (here: Clyde), the prototype completely describes his knowledge, an ab-

straction is pointless for him. If he later learns about other specimens and describes them

through modifications to the original, thus replacing some methods with others, changing

attributes and adding new ones, then slowly the image of the class itself emerges as an

intersection of the common properties. Now the process of abstraction is comprehensible

for him and after a few attempts also feasible. Delegation thus is a process that maps the

learning process itself by creating prototypes instead of classes.

In Snap! we mainly work according to this principle, which is presented below in detail. If

you really want, a class system also can be implemented.

In Snap! sprites are created as prototypes and equipped with the desired attributes and

methods. If their behavior has been sufficiently tested, clones can be generated dynami-

cally using the clone block. Each sprite has a parent (may be null) and children (also may

be null). The parent property can be set and / or modified later, so the system of depend-

encies is dynamic. If the program stops, all dynamically generated clones are deleted,

which is beneficial.

At first, a clone inherits (almost) all the attributes and methods of the mother object. This

is indicated by a "paler" representation in the palettes. If a sprite overrides inherited at-

tributes or methods, they replace those of the prototype, as usual. If you delete the over-

rides again, then the inherited appear.

4 Lieberman, Henry: Using Prototypical Objects to Implement Shared Behavior in Object Ori-
ented Systems, 1986, http://web.media.mit.edu/~lieber/Lieberary/OOP/Delegation/Delegation.html

cloning sprites

2 About Snap! 11

2.4 What is Snap!?

Snap! was (and is) developed by Brian Harvey and Jens Mönig for the project Beauty and

Joy of Computing5 and is made freely available on the internet. Since the system runs in

the browser, it does not require any installation and works on almost all devices6. It is sim-

ilar in surface and behavior to Scratch7, a free programming environment for children de-

veloped at MIT8. However, the concepts implemented in Snap! go far beyond Scratch

and have their roots in decades of teaching CS at MIT with Scheme, a LISP language.

They are introduced e. g. in a famous textbook by Harold Abelson and Gerald and Julie

Sussman9. Snap! is thus a fully developed programming language that can be used for

(almost) all problems. For most, it is sufficiently fast now. That is not self-evident and was

a shortcoming of their predecessors. Graphical languages are largely concerned with con-

trolling the state of the system. For example, to allow you to interrupt endless loops or to

"tolerate" access errors to data structures. There remains little time for program execu-

tion.

Snap! is a graphical programming language: programs (scripts) are not entered as text but

composed of tiles. Since these tiles can only be joined together if this makes sense, "mis-

spelled" programs are largely prevented. Snap! therefore is largely syntax-free. Neverthe-

less, it is not entirely free of syntax, because some blocks can handle different combina-

tions of inputs: if you combine them incorrectly, errors can occur. However, this mostly

happens when using very advanced Snap! concepts. If you apply these, you should know

what you are doing.

Snap! is extremely "peaceful": mistakes do not lead to program crashes but are indicated

by the appearance of a red marker around the tiles that caused the error - without dra-

matic consequences. The used tiles, which include the newly developed blocks, always

"live". They can be executed by mouse clicks so that their effect is directly observable. This

makes it easy to experiment with the scripts. They can be tested, changed, broken down

into parts and put together the same or different. This gives us a second access to pro-

gramming: in addition to problem analysis and the associated top-down approach, the ex-

perimental bottom-up construction of subprograms, which can be put together to form a

complete solution.

Snap! is clear: both program sequences and assignments of the variables can be displayed

and tracked on demand on the screen.

Snap! is extensible: with the implemented LISP concepts, new control structures can be

created, e. g. to work with special data structures.

Snap! is object-oriented, even in different ways: Objects can be generated by creating

prototypes with subsequent delegation, as well as in different ways by classes.

5 https://bjc.berkeley.edu/
6 These are, of course, computers, tablets, smartphones, ...
7 http://scratch.mit.edu/
8 Massachusetts Institute of Technology, Boston
9 Abelson, Sussman: Struktur und Interpretation von Computerprogrammen, Springer 2001

the developers

origins at Lisp

barely

syntax errors

two styles of

programming

vivid and expandable

object-oriented

2.4 What is Snap! 12

Snap! is first-class: all structures used are first-class, so they can be assigned to variables

or used as parameters in blocks, can be the result of a function block or content of a data

structure. Furthermore, they may be untitled (anonymous), which is important for the im-

plemented aspects of the lambda calculus, the basis of LISP. Consequently, the logo of

Snap! contains the same proud Lambda, which builds the hair of Alonzo, the mascot of

BYOB.

2.5 What Snap! is not!

Snap! is not a tool for professional software production. It started as a technology study

commissioned by the American Ministry of Education under CE21 (Computing Education

for the 21st Century), which is also designed to reduce the drop-out rate in technical sub-

jects. It is a tool to implement and test CS concepts by way of example.

Snap! primarily is used for work in the field of algorithms and data structures. Due to the

browser environment, essential areas of computer science such as access to files or hard-

ware can be embedded via extensions but are not (yet) part of the core language. How-

ever, the built-in url-block allows in the meantime quite easy access to the Internet and

thus using intermediary servers to databases or external hardware. Both are included in

the book.

Since the code of Snap! is freely available, there are different versions, sometimes with

substantial modifications. Whether this is a curse or a blessing, is a question of perspective,

as we shall see.

the limits

Alonzo

2 About Snap! 13

2.6 The Snap!-Screen

The Snap!-Screen consists of six sections below the menu bar 10.

¶ On the far left are the command tabs, divided into the categories Motion, Looks,

Sound and so on. If you click on the corresponding button, the tiles of this category are

displayed below. LŦ ǘƘŜȅ ŘƻƴΩǘ fit all on the screen, you can scroll the screen area in the

usual way.

¶ To the right, in the middle of the screen, the name of the object currently being edited

as well as some of its properties are displayed. The default name of the sprite can - and

should - be changed here.

¶ Underneath is an area in which, depending on the tab, the scripts, costumes and sounds

of the sprite can be edited or created.

¶ At the top right is the output window where the sprites move. This can be resized using

the buttons above or via the entry in the tool menu (Stage size ...).

¶ At the bottom right, the sprite corral displays the sprites. If you click on one, the middle

section changes to its scripts, costumes or sounds - depending on the selection.

¶ The menu bar on the left offers the usual menus for loading and saving the project as

well as individual sprites. Furthermore, many settings can be made. One possibility is

to set the language. Nevertheless, I recommend that you stay with the English version,

as it is possible to differentiate your own blocks, titled e. g. in German, from the native

ones at first glance.

¶ On the far right we find the green flag known from Scratch, with which several scripts

can be started at the same time when using the corresponding block. The pause button

next to it pauses everything accordingly and the red button stops all running scripts.

Individual scripts or tiles can be started simply by clicking on them.

10 The division of the areas can be changed with .

Sprite-bezogene

Einstellungen

the menu bar

the tool menu

2.7 An Example for experienced Users: Flu 14

 2.7 An Example for Experienced Users: Flu

The example simulates the spread of a flu epidemic under different conditions. It provides

a quick overview of the essential features of Snap! and is intended especially for experi-

enced programmers. Beginners should read the next chapters first.

The question is which proportion and which special groups of people in a population should

be vaccinated if the spread of a flu epidemic is to be stopped. The question is not so easy

to answer, because the outcome depends on several parameters: the likelihood of infec-

tion indicates how probable the infection of a healthy person in contact with a sick person

is, the seroconversion time is the time between infection and immunization, the numbers

of healthy and diseased persons at the beginning of the simulation determines the number

of contacts between them, and the number of multipliers indicates how many people in

the population have particularly large numbers of contacts or contacts to particularly dis-

tant groups. If one of them becomes infected, e. g. the disease will be worn in distant areas.

Since contacts, infections, Χ are randomized, we will only achieve sustainable results if we

perform the simulation multiple times with the same parameter values - and after that we

still must discuss which values represent "results" in the sense mentioned. That's why the

topic is perfect for a small classroom project. A "control group" develops the higher-level

scripts, in this case assigned to the stage. It designs the task distribution with the other

two groups. The other groups develop the prototypes person and graph, which are largely

independent of each other.

three prototypes

for three groups

2 About Snap! 15

2.7.1 Writing Your Own Methods

At various points it is necessary to get rid of the clones of a prototype without exiting the

program. We achieve that by a new method delete all clones of <prototype>. It is a

Command block, which is a command with (in this case) one parameter. (Function blocks

are called Reporter in Snap!.) New blocks are written in the block editor. It can be started

with the buttons Make a block we find in the palettes or ς the fastest way ς by right-clicking

on the script layer and calling it from the context menu. First, we specify the method name,

if desired with blanks and special characters, select the type (Command, Reporter, or

Predicate) and indicate whether itΩs a global ("for all sprites") or local ("for this sprite

only") method. We can also choose the palette to which the block is to be included. I do

not recommend this: The best place to find the gray self-written blocks is the bottom of

the Variables palette. For example, if you evaluate student programs, it is often a problem

to find the newly created blocks at all.

After pressing the return key, the Block editor opens, and the block name appears ς with

+ characters in the spaces and margins. There, we can open another menu

by mouse clicks, which allows to insert parameters in these places and to

assign types to them if necessary. In our case, we click on the far right, enter

the parameter identifier prototype and click the small right arrow to specify

the typing. After that a selection box opens11. We choose as type Object (the

arrow), come back into the Block editor, and drag the required commands

into its script area.

Our method uses two script variables (clones and thisClone) known only in

this block. It asks the parameter prototype, which later is passed with a ref-

erence to the prototype of all persons, for its descendants ς these are all

occurring dynamically generated "persons"12. As long as these are still avail-

able, it will store the first in one of the script variables, delete them from the

list, and then ask that person to delete themselves, with

tell <thisClone> to <delete this clone>13.

11 This box is described in detail in the snap-reference manual that you get when you click the
Snap! icon on the top-left of the window.
12 The clones created statically through the context menu in the sprite area are not found
there.
13 The delete block can only be found in the palettes of the sprites. You can reach it in the
stage via the search function at the top of the palette area.

2.7 An Example for experienced Users: Flu 16

2.7.2 Elementary Algorithmic and Variables

To define the parameters and other control values, we use the stage, which we click in the

sprite corral. This responds to the message "go" by setting the initial parameters and de-

termining which quantities are to be measured in the simulations. Thereafter, correspond-

ing simulation runs are started.

In detail: Since initially only the prototype person is available, we "fish" for him using the

block my <other sprites> from the Sensing palette. The prototype is the first element of

the received list. We store it in the global ("for all Sprites") variable prototype person that

we created previously in the Variables palette. We also created all the other required

variables via the Make a variable button, with the ones needed only within the stage

being marked as local ("for this sprite only"). You can recognize them at the "marker" be-

fore the name. The others are global. Global variables are displayed at the top of the Var-

iables palette, then follow the local ones. The output area is cleared (there might be an

old graphic), some variables get appropriate initial values and a list called data to record

the simulation results will be deleted (set <data> to <list>). This part could have been

well outsourced to a separate block, but since we want to experiment with the variable

values, it is better if they are "on the table".

In the following, the

number of initially vac-

cinated (the immune

normal) is increased

from zero to 100 in

steps. We find the con-

trol structures for this

in the Control palette.

For each value, a series

of simulation runs is

performed, and the

mean value is deter-

mined from the results

(here: the maximum

number of infected).

The variable number

of simulations deter-

mines how often this

happens. After each

run, the results are en-

tered as a percentage

in the data list. Finally,

the Graph sprite will

be asked to create a

graphic.

2 About Snap! 17

2.7.3 Creating Objects

In addition to the script already described, the control

program uses another one: simulate. In it, some initial

values are reset, and the corresponding number of per-

sons are generated, which differ in type (normal, multi-

plier) and status (healthy, infected, immune). After that

the simulation run is started by sending the message

"come on!" which is heard by all objects in the system.

How to create objects?

In the method we create a person type: <type> and

status: <status>. A local script variable p references a

newly created clone of the specified prototype. After

that, the clone is present, visible and accessible under

the name p ς quite simple.

However, the clones should differ in type and status. For

this, they contain (here) a local method inherited from

the prototype setup <status> <typ>. We have to call

these with the given parameter values. We therefore

"tell" the object p that it should execute this method. As

this is local to persons, we take the <attribute> of <ob-

ject> Block from the Sensing palette, select the proto-

type in the right-hand box (here: Person) and after that

in the left box the desired method (here: setup). Because

two parameters are to be specified, we expand the block

with the small arrow keys and enter status and type be-

hind with inputs. The block is to be understood as "p,

please execute in your context of methods and variables

the method passed with the specified parameters". The

block is equivalent to the well-known dot notation of the

OOP languages: p.setup(status,type);

invoked methods in Person

