

 NetsBlox: https://netsblox.org 1

NetsBlox Lesson: Plotting Ice Core Data

In the lesson on plotting, we already utilized climate change related data. We plotted
atmospheric CO2 concentrations using data measured at the Mauna Loa Observatory in Hawaii
since 1958. Here is a refresher. The service is under the Climate heading in the menu. It has two
RPCs, getCO2Trend and getRawCO2. The raw data is one measurement per month. Since the CO2
concentration has an annual cycle, the trend is just an annual average value, again once a month.
Here is the code that plots the smoothed version of the data:

If the start and stop year are not specified, the RPC returns the data for the entire date range
available. The ChartSetup custom block should look familiar:

And the result:

The project is available here:
https://editor.netsblox.org/?action=present&Username=ledeczi&ProjectName=Mauna%20Loa
%20v2

https://netsblox.org/
https://editor.netsblox.org/?action=present&Username=ledeczi&ProjectName=Mauna%20Loa%20v2
https://editor.netsblox.org/?action=present&Username=ledeczi&ProjectName=Mauna%20Loa%20v2

 NetsBlox: https://netsblox.org 2

Ice Core Data

NetsBlox has several other data services related to climate change:

One fascinating data source is ice cores. Researchers have drilled down into ice fields in
Antarctica, Greenland and even high mountain glaciers and obtained ice as old as 800,000 years.
The ice captured air bubbles that can be analyzed to gain insight into Earth’s atmosphere in
ancient times. Here is an interesting website that talks about ice cores:
https://icecores.org/about-ice-cores

One of the important data that researchers have been able to collect is CO2 concentrations from
the past. This is what we will use today. So, let’s explore the IceCoreData service. It has the
following RPCs:

Let’s start by figuring out what ice cores we have data from:

https://netsblox.org/
https://icecores.org/about-ice-cores

 NetsBlox: https://netsblox.org 3

GRIP is in Greenland, while the last three are from glaciers high up in the Andes Mountains. The
rest are from various places in Antarctica. The Antarctic Composite is a data set that was put
together from various ice cores like Dome C and Vostok. To investigate what kind of data a
particular core has, we can use the getIcecoreMetadata RPC:

We have the name, a short description, the location and some info about the data itself. As you
can see, we have to dig a little deeper to get to that:

And deeper still:

So, in the Antarctic Composite dataset, we 1901 data points for CO2 concentrations starting over
800,000 years ago and going all the way too early 2001.

https://netsblox.org/

 NetsBlox: https://netsblox.org 4

If you want a quick overview of all the data that is available, you can use this RPC:

Today, we’ll focus on CO2 data from the Antarctic Composite data set. That is easy enough to
get:

And we also know how to plot it quickly:

https://netsblox.org/

 NetsBlox: https://netsblox.org 5

Let’s make this plot prettier first of all, but also interactive, so that we can look at various parts
of the data instead of just the whole range. First, I am going to increase the stage size to give
more room for the labels to avoid overlap. You can do that by clicking the Cogwheel button on
top and selecting “Stage size.” If you have room, double the default size to 960 by 720, but you
can set it to whatever size you prefer. Once we do this, we need to adjust the options for the
draw RPC. Let’s do that and add a title and some labels:

https://netsblox.org/

 NetsBlox: https://netsblox.org 6

We know how to include multiple plots in the same chart, so why don’t we add the Mauna Loa
data for comparison? And we can also add a legend with the labels option:

We replaced the input argument lines of the draw RPC to have a list of two data arrays: one for
the ice core and one from Mauna Loa. The chart service takes care of the rest:

Check out the green plot: an almost vertical line. It would be interesting to be able to inspect that
region closer, right? Let’s introduce a variable called start year that we will adjust to see
different time regions:

We set it to -2000 and include it in the getCarbonDioxideData RPC as an input. This is what we
get:

https://netsblox.org/

 NetsBlox: https://netsblox.org 7

We are looking at the past 4000 years now. And the green line is still almost vertical. Interesting…

Let’s make start year user-adjustable. We can click the checkbox next to its name in the
Variables tab to make it visible on the Stage. If you right click on it, you can make it a slider. But
we also need to make sure that the minimum and maximum values for it are what we need.
Again, we can specify these by right clicking on the variable in the Stage and selecting “slider min”
and “slider max.” I typed in -800000 for the minimum value and 1800 for the maximum. Now we
can slide the slider and we are changing the variable. Very nice!

But wait! The plot is not changing at all! What is going on?

https://netsblox.org/

 NetsBlox: https://netsblox.org 8

Of course, the plot is not changing. We use this start year variable only once. We create the
chart and display it and our script is done. It does not care if we change the variable at all. What
we need to do is put the plotting code into a loop:

While this works, this is super wasteful. It keeps calling the draw RPC continuously at max speed
when most of the time the start year variable is not changing at all. We should do two things:

1. Check whether the start year variable has changed and only call the draw RPC if it has,
2. Wait a fraction of a second before checking again.

Here is our final version:

We introduced a new variable called prev. This will keep track of the start year value the last
time we noticed that it changed. We initialize it to a value that start year can never be (3000
in this case). Then in the forever loop, we check whether prev and start year are the same
or not. If they are the same, we do not need to do anything, so we just wait one tenth of a second
before checking again. If they are not the same, we need to update the chart. First, we update
the value of prev. It is actually important that we do this first. Since the draw RPC may take some
time (a couple of tenths of a second) and in the meantime, the user might be sliding the slider. If
we set prev after the RPC call, we may miss the change the user made in the meantime. Finally,
we call the draw RPC to refresh the chart.

Here is the final version:
https://editor.netsblox.org/?action=present&Username=ledeczi&ProjectName=IceCoreDemo&

As an exercise, you can add a stop year variable and zoom in any of the regions that way.
However, care must be taken that stop year remains greater than start year at all times.

https://netsblox.org/
https://editor.netsblox.org/?action=present&Username=ledeczi&ProjectName=IceCoreDemo&

	Ice Core Data

