

 NetsBlox: https://netsblox.org 1

NetsBlox Lesson: Multi-Player Games
21 Pebbles

As we have seen in previous lessons, message passing makes it possible for NetsBlox projects to
communicate with each other. That means that we can create distributed multi-player games
where each player runs a project (or a role) on their own computer. In this lesson, we’ll focus on
turn-based games. Most games before the computer era were turned-based, such as chess, other
board games and most card games too. It seems like a good place to start.

Turn-based Games

From a programming point of view, the biggest challenge when implementing a distributed turn-
based game is maintaining whose turn it is and who comes next. The main reason for the difficulty
is that all roles run on different computers and they have to agree on the state of the game. To
make this easier, NetsBlox comes with a service called NPlayer that does exactly that. It has a
number of RPCs and it also sends messages to roles when the game starts and when it is their
turn.

We are going to start with a dummy game to see how the NPlayer game service works before
shifting our focus to the real game, 21 pebbles that we are going to build.

First, let’s see what RPCs the NPlayer service has. You can find it under the Games submenu of
the first pull-down menu of the call block in the Network tab:

https://netsblox.org/

 NetsBlox: https://netsblox.org 2

The two most important RPCs shown above are the start and the endTurn calls. The rest can be
useful in some cases, but are not required to create a game. The getActive, getNext and
getPrevious RPCs simply return the role names of the current, the next and the previous roles
based on the order of turns. The getN RPC returns the number of roles, that is, players. We are
not going to use these today.

The start RPC starts the game. Once it is called, the server sends a start game message to every
role. Whichever role calls the start RPC has the current turn.

The endTurn RPC needs to be called by the role that has the current turn. It returns true if it
succeeds which basically means that the correct role called it. If another role does, the RPC
returns false. Once the correct role calls the endTurn RPC, the server sends a start turn
message to the next role. The endTurn RPC has an optional input argument called next: the name
of the role which should have the next turn. In most cases, we leave this blank and let the server
decide whose turn it is. The server simply uses a fixed order as you do when you play a card game
and you go around the table.

To start the game, one of the players should click the green flag, and that same role needs to call
the start RPC and immediately give up its turn:

The server will send a start game message to every role including the one whole called the
start RPC, followed by a start turn message to one of the roles, specifically the one that comes
after the one who just started the game and ended its turn.

First, we need to make these two message types that the server is using. Click the “Make a
message type” button under the Network tab. The first message type should be called “start
game” and it has no data fields, so click the left arrow to delete the one it comes with. The second
message type is “start turn” and it has no data fields either.

Now we are ready to implement the when I receive start game message handler. In this
game, we will simply show whose turn it is by turning the sprite green, waiting for a space key
press, turning red and passing the baton to the next player. The when I receive start game
message handler should carry out all the initialization that every role needs at startup:

https://netsblox.org/

 NetsBlox: https://netsblox.org 3

In our case, we turn red and display a message. The when I receive start turn message
handler needs to prepare for the turn:

In our case, we turn green and display that it is our turn now. The only thing left is to write the
script that handles the space key press:

First, we need to make sure that when the space key is pressed it is indeed our turn. This prevents
playing out of turn. Fortunately, the server will let us know by returning false after calling the
endTurn RPC. In our case, we simply display a warning message. Otherwise, it was our turn, so
we turn red and display that we are done with the turn.

Make sure to save the role and in the Room tab, click on the role (not its name) and select
“Duplicate.” Do this at least twice to have three or more roles altogether. Rename the roles by
clicking on their name if desired. Start NetsBlox in additional browser windows and invite yourself
to the game by clicking on a role and picking “Invite User” and then selecting “myself.” Position
the browser windows next to each other and click the green flag in one of them. Hit the space
bar in the various browser tabs and see what happens.

Here is our very first, but pretty simple distributed multi-player game:

https://editor.netsblox.org/?action=present&Username=ledeczi&ProjectName=DummyGame&

https://netsblox.org/
https://editor.netsblox.org/?action=present&Username=ledeczi&ProjectName=DummyGame&

 NetsBlox: https://netsblox.org 4

21 Pebbles

The game of 21 pebbles is played by two players who take turns of removing at least 1 and at
most 3 pebbles from a single pile of 21 pebbles. The person who removes the last pebble loses
the game. Here is how the stage looks like:

The circle sprite in the top left corner is red when it is not our turn and green when it is. The blue
circle with the number helps us pick how many pebbles we want to remove. You click on it to
change the number between 1, 2 or 3. The green arrow sprite is to be clicked when we want to
make our move. The pebble sprite is actually not visible most of the time, we simply use stamping
to show how many are left on the stage.

Since our focus is on how to make turn-based games, we provide you with a shell that has all the
costumes and much of the game-specific code already implemented. But we left out the crucial
pieces related to the distributed aspects of the game. Here is the shell:

https://editor.netsblox.org/?action=present&Username=ledeczi&ProjectName=VDN%2021%20
Pebbles%20Shell&

https://netsblox.org/
https://editor.netsblox.org/?action=present&Username=ledeczi&ProjectName=VDN%2021%20Pebbles%20Shell&
https://editor.netsblox.org/?action=present&Username=ledeczi&ProjectName=VDN%2021%20Pebbles%20Shell&

 NetsBlox: https://netsblox.org 5

Let’s look at the sprites one by one. Here is the script for the red/green light:

We hide when the game is not active, and show when it is. Whenever we receive an event called
Switch Light, we display the correct color based on the variable visible to all sprites called
MyTurn.

Here is the code for the Number sprite:

The initialization code is pretty simple. When we receive the Start! event, we set the MyMove
variable to 1, shows the corresponding costume and place the sprite in its desired position. The
when I am clicked event handler switches the numbers around, from 1 to 2, from 2 to 3 and
from 3 back to 1.

The green arrow, that is, the Go sprite, is the one that provides messages to the user in addition
to initiating our own move:

https://netsblox.org/

 NetsBlox: https://netsblox.org 6

The only non-obvious script here is the when I am clicked event handler. First of all, it checks
whether it is our turn and provides a warning message if it is not. If it is our turn, it checks whether
we are trying to remove more pebbles than what’s left in the pile. If everything is fine, it
broadcasts an event, Make Move which is handled by the Pebble sprite.

It is the Pebble sprite that is the most complicated and the one that is incomplete.

The when green flag clicked code should look familiar: we start the game and end our turn
immediately. The when I receive start game script does all kinds of initialization. First, it
broadcasts Start! to the other sprites. It sets MyTurn to false. It tells the light to set the color to

https://netsblox.org/

 NetsBlox: https://netsblox.org 7

red. It makes sure the costume is the pebble one. It sets the PebbleCount variable to 21. And
finally, it calls the DisplayPebbles custom block that displays the current number of pebbles in
up to three neat rows.

The when I receive start turn script sets MyTurn to true and asks the light to change colors.

So, what’s left? Making the move and handling the case when the other player has made a move.
How do we do that? Well, we have a new message type called Move. We need this. The NPlayer
service only deals with the turn-based nature of the game. The actual game-specific logic is still
our job. And it involves sending a message with the number of pebbles we have just removed.
So, the new Move message has one field called val that contains a number with the value of 1, 2
or 3.

Why don’t you stop reading here and try to finish the project by yourself? The yellow when I
receive Make Move script runs when the Go sprite was clicked by the current player. What do
we need to do here?

The brownish when I receive Move script will run when the other user finished their turn and
let us know how many pebbles they removed. What do we need to do then?

Take your time! Once you are done, turn the page!

https://netsblox.org/

 NetsBlox: https://netsblox.org 8

Let’s start with the code that handles the case when the other player moved because it is simpler.
We have just learned that val number of pebbles have been removed. So, we subtract val from
PebbleCount and refresh the screen showing only the remaining pebbles. Then we check: if there
are no more pebbles left, we are the winner. So, we let the other sprites know. For example, the
Go button will display a congratulatory message and then hide.

What about making our own move?

Most importantly, we send a Move message to the other player with our move. Note that if we
use the destination others in room then both roles of the game can be the exact same. If we
used a specific role name, we would need to modify it in corresponding script in the other role.

Then we update the PebbleCount variable and show the correct number of pebbles left. We also
need change the MyTurn variable and turn the light red. Then we call the endTurn RPC. Finally, it
we ended up with no pebbles, we have just lost the game. If that is the case, we notify the other
sprites.

Here is the final project:

https://editor.netsblox.org/?action=present&Username=ledeczi&ProjectName=VDN%2021%20
Pebbles&

https://netsblox.org/
https://editor.netsblox.org/?action=present&Username=ledeczi&ProjectName=VDN%2021%20Pebbles&
https://editor.netsblox.org/?action=present&Username=ledeczi&ProjectName=VDN%2021%20Pebbles&

	Turn-based Games
	21 Pebbles

